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The stability of a plane relaxational liquid jet has been studied theoretically
and experimentally through linear stability analysis and flow visualizations. The
relaxational liquid jet is obtained by the outflow of a liquid from a plane channel
with an upstream fully developed Poiseuille flow into an ambient stagnant gas. Linear
spatial stability calculations show that there are five convectively unstable modes,
three sinuous and two dilatational. The spatial stability calculations are compared to
experimental results for wavenumber variation and the growth of waves found in the
visualizations. These variations have been quantified with a wavelet transform and
through a comparison with the spatial stability results the type of mode observed
in the visualizations has been determined. For this type of mode the calculated
wavenumber variation is in good agreement with the experimental results. Also,
in the experiments the breakup of the jet has been observed when the Reynolds
number reaches a certain value, and as the Reynolds number increases this breakup
moves closer to the channel exit. This upstream movement of the breakup can be
explained by the linear stability results. Finally the relaxational liquid jet is shown
to be absolutely unstable for a certain parameter region. Close to the nozzle both a
sinuous mode and a dilatational mode are shown to be absolutely unstable. As the
jet profile relaxes to uniform, the sinuous mode is shown to be the only unstable
mode. This occurs for Weber numbers We < 1, which is in agreement with the theory
for liquid jets with uniform velocity profile. The frequency selection for the observed
waves is believed to be related to the region of absolute instability located closest to
the channel exit.

1. Introduction
Liquid jets were among the first flow phenomena to be investigated within the field

of fluid mechanics. The drop formation of a cylindrical liquid jet was studied by
Savart (1833) and Plateau (1873), and in the latter half of the 19th century Rayleigh
(1896) performed a stability investigation, which made use of linear stability theory.
The cylindrical jet is inherently unstable. Since surface tension can be expressed as a
surface energy the minimization of the surface area gives an energy minimum. For a
liquid cylinder a minimum is obtained if the jet breaks up into pieces 2πa long that
form spherical drops. Here a is the radius of the cylinder.

† Present address: STFI – Swedish Pulp and Paper Research Institute, SE-114 86, Stockholm,
Sweden.
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(a)                                                           (b)

Figure 1. Definition of modes, dilatational or varicose (a) and sinuous (b).

For a planar jet, where the plane perpendicular to the flow direction is basically
rectangular with a high width to thickness ratio, the earliest published result was
obtained by Squire (1953). This investigation was similar to Rayleigh’s of the
cylindrical jet. Hence, the streamwise velocity in the jet is assumed to be constant
throughout the thickness of the jet, the flow is considered to be inviscid and the
presence of an ambient gas is neglected. The surface is subjected to infinitesimal
disturbances and the decay or growth of these indicates if the jet is linearly stable or
unstable. The result was that the plane jet is stable when subjected to infinitesimal
disturbances, which is the opposite to the case with the cylindrical jet. With the
assumptions used in this analysis surface tension will always act as a stabilizer, which
will force the surface back to its original state, i.e. minimum surface energy.

By assuming that the inviscid jet with uniform velocity profile is surrounded by
an inviscid gas Hagerty & Shea (1955) derived a dispersion relation, which indicates
that the jet is linearly unstable for a finite wavenumber range. Both dilatational (or
varicose) and sinuous disturbances can be unstable, see figure 1. The driving force for
this disturbance is the pressure variation on the surface due to the surrounding gas.
They also performed experiments on the breakup of the jet.

Later Lin, Lian & Creighton (1990) and Li & Tankin (1991) extended the analysis
to include viscosity. This gives two unstable modes similar to the modes identified by
Hagerty & Shea (1955). However, Li & Tankin also found a parameter region where
viscosity is the driving force for disturbance growth. As an extension to this analysis
Lin et al. also found the presence of a linear absolute instability of the sinuous mode
for low wavenumbers when Weber number We < 1.

The spatially developing flow of a plane liquid jet due to the effect of gravity has
been studied with respect to local convective and absolute instability by de Luca
& Costa (1997). Also, the global instability of this flow was experimentally studied
by de Luca (1999). Disregarding the stretching effect of gravity on a vertical liquid
jet the basic flow field in a plane liquid jet is normally not uniform but influenced
by viscosity, see Tillet (1968). This has a strong effect on the stability, which was
investigated with experiments and linear stability theory by Hashimoto & Suzuki
(1991). They experimentally showed the presence of fine interfacial waves, which grow
downstream. The downstream wavenumber variations found in the visualizations were
compared to results from linear stability theory. In order to perform the calculations
the basic flow field was obtained with the approximate method presented by Lienhard
(1968). These calculations did not include a surrounding gas. The results of the linear
stability calculations showed the presence of four unstable modes, two sinuous and two
dilatational. Surface tension was neglected in the calculations when the comparison
between the experiments and the linear stability was made.

Söderberg & Alfredsson (1998) performed a similar experiment and also solved the
two-dimensional Navier–Stokes equations in order to obtain the basic flow field. The
calculations included the free surface and the calculated velocity profiles showed good
agreement with Pitot-tube measurements. Also, the temporal linear stability of these
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velocity profiles was investigated. In these stability calculations the surface tension
and the viscous surrounding air were included. The calculations showed the presence
of a fifth unstable mode, which is a sinuous mode with no equivalent dilatational
mode.

The earlier linear stability results by Hashimoto & Suzuki (1991) and Söderberg
& Alfredsson (1998) only show a qualitative agreement with the experimental results.
Both investigations are based on the temporal stability formulation; hence the linear
wave disturbances grow in time. For this type of experiment where the stability is
clearly convective the disturbance frequency is constant throughout the downstream
motion of a wave; hence the growth is in space and not in time. Due to this there is
an uncertainty in the identification of the mode appearing in the experiments.

The visualizations by Söderberg & Alfredsson (1998) were performed with a thin
plane water jet emanating from a channel. At low velocity the jet was perfectly clear
and showed no disturbances in either direct or shadowgraph visualizations. Above
a certain critical velocity spanwise homogeneous waves appear in the visualizations.
When the velocity was increased even more the jet broke up. This breakup occurred
along a spanwise homogeneous line, which moved upstream toward the nozzle as the
velocity was increased.

The aim with this paper is to gain physical insight in the origin of the waves
found in visualizations of the relaxational plane liquid jet. This has been done by a
linear spatial stability analysis of the relaxational jet. The results from this analysis
are compared to a temporal stability analysis, which is similar to that presented by
Söderberg & Alfredsson (1998). The results from the spatial stability analysis are
compared to data obtained from visualization images, which were quantified in terms
of wavenumber and amplitude variation. The images used are identical to those used
by Söderberg & Alfredsson (1998), but are here quantified with the aid of a wavelet
transform. Also, the breakdown of the waves is discussed based on the experimental
results and the results from the spatial stability calculations. Finally, the possibility of
absolute instability of the plane liquid jet is investigated by the contour deformation
and cusp-map methods.

2. The linear stability problem
2.1. Linear stability equations

The geometry (nozzle and jet) of the flow of a relaxational plane liquid jet can be seen
in figure 2. The horizontal x-axis is referred to as the streamwise direction and the
vertical y-axis as the normal direction. The velocity fields in the relaxational liquid
jet (subscript l) produced by this nozzle and the surrounding gas (subscript g) are
divided into basic and disturbance flow fields, which satisfy the governing equations

ul,g = {Ul,g(y; X) + u′
l,g(x, y, t), v′

l,g(x, y, t)}, (2.1a)

pl,g = Pl,g(X) + p′
l,g(x, y, t). (2.1b)

All variables have been scaled with half the channel thickness, a, and the mean
velocity in the channel nozzle, Um, according to

x = x∗/a, y = y∗/a, u = u∗/Um, v = v∗/Um, p = p∗/
(
ρU 2

m

)
,

where superscript ∗ indicates an unscaled variable and a slow coordinate X = εx,
where ε =1/Re � 1, has been introduced, which governs the variation of the basic
flow. Both the basic flow and the disturbance (denoted by prime) are assumed to be
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Figure 2. (a) Channel geometry. (b) Velocity distribution in the channel jet. —, calculated;
+, �, measured with pitot-tube; – –, parabolic profile with the same maximum velocity as the
measured profile. Ul is the measured/calculated velocity in the liquid (water) and Um is the
mean flow velocity in the channel. Um = 1.3 m s−1, a = 0.55 mm, Re = 700 and We = 12.5,
profiles at x/a = 0, 18, 36, 55, 73, from Söderberg & Alfredsson (1998).

two-dimensional, i.e. independent of z. The basic flow field of the relaxational liquid
jet is taken from the numerical solution by Söderberg & Alfredsson (1998), which
is also shown in figure 2 together with Pitot-tube measurements of the streamwise
velocity. They found that the flow field was similar when the streamwise coordinate,
x, was scaled with the Reynolds number,

Rel =
ρlUma

µl

.

The similarity gives that Ul(x/Re, y) represents a specific shape of the velocity profile,
which was shown to be valid for Rel > 100.

An ansatz is made, where the disturbances are assumed to have the form

{u′, v′, p′} = {û(y; X), v̂(y; X), p̂(y; X)}eiΘ(x,t;X), (2.2)

where the phase Θ(x, t; X) is given by

Θ(x, t; X) =

∫ x

x0

α(εξ ) dξ − ωt. (2.3)

Here α and ω are the wavenumber and frequency respectively. The decomposition (2.1)
and the ansatz (2.2) are inserted into the Navier–Stokes equations and linearization is
performed. Also, terms containing powers of ε, which are a result of the streamwise
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variation of the basic flow, are neglected such that the result is the local Orr–
Sommerfeld equation,

(iαU − iω)(D2 − α2)v̂l,g − iαD2Uv̂l,g = Re−1
l,g (D

4 − 2α2D2 + α4)v̂l,g, (2.4a)

where D= d/dy. This means that the flow locally, i.e. at the position X, is considered
to be parallel. The Orr–Sommerfeld equation is formulated with the frequency ω as a
parameter instead of the phase velocity, which was used by Söderberg & Alfredsson
(1998).

At a specific streamwise position in the liquid jet the free surface is given by y = ±h̃,
where h̃ = h̃(X) = h(X)/a is the local scaled half-jet-thickness. At the surface four
conditions have to be formulated in order to couple the equations (2.4a) in the liquid
and gas. Also, an equation describing the kinematic condition at the surface has to
be added. These conditions are the same as in Söderberg & Alfredsson (1998) and by
performing the same procedure as for obtaining the Orr–Sommerfeld equation (2.4a)
a local linearized formulation of these conditions is obtained,

(iαUl,g − iω)ĥ±h̃ = v̂l,g (2.4b)

v̂l = v̂g, (2.4c)

Dv̂l − iαĥ±h̃

(
DUl − DUg

)
= Dv̂g, (2.4d)

(D2 + α2)v̂l − iαĥ±h̃(D
2Ul − µ̃D2Ug) = µ̃(D2 + α2)v̂g, (2.4e)[

(iαUl − iω) − Re−1
l (D2 − 3α2)

]
Dv̂l − iαDUlv̂l

=
[
ρ̃(iαUg − iω) − µ̃Re−1

l (D2 − 3α2)
]
Dv̂g − iαρ̃DUgv̂g − α4We−1ĥ±h̃, (2.4f )

where ĥ±h̃ are the amplitudes of the disturbance at the two surfaces. The five con-
ditions are derived from the equation for the free surface (2.4b), the no-slip condition
at the surface (2.4c) and (2.4d), and finally the normal and tangential stress conditions
at the free surface (2.4e) and (2.4f ). Also, Reg , We, ρ̃ and µ̃ are the gas Reynolds
number, Weber number, density ratio and viscosity ratio, respectively. These are
defined as

Reg =
ρgUma

µg

We =
ρU 2

ma

γ
, ρ̃ =

ρg

ρl

, µ̃ =
µg

µl

.

In order to have a basic flow field in the surrounding gas without making
assumptions about the geometry and without having to solve the flow of the
gas phase, the solution to Stokes first problem, the infinite starting plate, see e.g.
Schlichting (1979), is used,

Ug(X, y) = Ul(X, ±1)(1 − erf η), where η = (|y| − 1)(Reg/X)0.5, (2.5)

where Ul(X, ±1) is the streamwise velocity of the surface of the jet. The time
dependence in the solution to Stokes problem has been transformed into a downstream
distance with Um, as done by Söderberg & Alfredsson (1998).

As far-field boundary conditions in the gas the disturbance amplitudes, û and v̂,
are set to zero, which give

v̂g = 0 and Dv̂g = 0 at y = ±∞. (2.6)

The Orr–Sommerfeld equation and the boundary conditions constitute the eigenvalue
problem,

D(α, ω; Re, We, X)v̂(y) = 0,
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where D is a linear differential operator. This gives eigenfunctions v̂(y) only if the
parameters satisfy the dispersion relation

D(α, ω; Re, We, X) = 0. (2.7)

The variation of the density and viscosity ratios, ρ̃ and µ̃, has been omitted, since
the problem has been solved only for a water jet in air. Hence, these parameters are
constant throughout this investigation.

2.2. Numerical solution

The eigenvalue problem has been solved with a spectral method using Chebyshev
polynomials. The solution is obtained for the complete system with liquid, gas and
the free surface. The solution is represented as,

v̂ =

∞∑
n=0

bnTn(y) for − 1 � y � 1, (2.8)

where Tn is the nth Chebyshev polynomial and bn are coefficients to be determined.
The series is truncated at some finite value of n and inserted into the equation and
boundary conditions. This gives a linear system of the form

Lb = cMb,

where b = {b0, b1, b2, . . . , bN+Nadd
} is the coefficient vector to the Chebyshev

expansion (2.8). The matrices L and M are given by

L = iαU (T′′ − α2T) − iαU ′′T − 1
Rel,g (T

iv − 2α2T′′ + α4T), (2.9)

M = iα(T′′ − α2T), (2.10)

where T(k) is a matrix representing the kth derivative of the Chebyshev polynomials.
The zeros of the highest-order polynomial are chosen as collocation points, which
give

ym = cos
πm

N
, −1 � y � 1, m = 0, 1, . . . , N + Nadd.

This will give a distribution with grid points clustered at the ends of the interval. The
matrices (2.9) and (2.10) have dimension (N + 1)×(N + 1 +Nadd), where Nadd depends
on how the boundary conditions are treated. These matrices can both be implemented
by just adding them to the matrices L and M or by substitution of one or two rows at
the ends of the numerical domain −1 � y � 1. All possible combinations were tested
and for all results that are presented in this paper the boundary conditions have been
implemented both by substitution and by adding them to the matrices.

2.2.1. Liquid phase

Because of the extent of the domain (2.8) the equations have locally been re-scaled

to local jet thickness and local mean velocity Ũ = Ũ (X). It should be noted that the
chosen definition of the Reynolds number makes it constant throughout the jet since
the quantity Uma is the mass flow. The Weber number will however change as will
the local frequency ω and the wavenumber α if these are fixed globally, table 1.

Because of the symmetry of the basic flow with respect to the centreline of the jet,
even and odd solutions to the eigenvalue problem were treated separately (the v- even
and odd solutions are equivalent to sinuous and dilatational waves respectively, see
figure 1), which meant that the eigenvalue problem could be solved by considering
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Variable/parameter Global Local Relation

Reynolds number Rel,g R̃el,g R̃el,g = Rel,g

Weber number We W̃e W̃e = WeŨ 2h̃

Coordinate x x̃ x̃ = xh̃

Velocity u ũ ũ = uŨ

Wavenumber α α̃ α̃ = α/h̃

Frequency ω ω̃ ω̃ = ωh̃/Ũ

Table 1. Relations between local and global quantities where Ũ = Ũ (X) =U (x)/Um and
h̃ = h̃(X) = h(x)/a are the local dimensionless mean velocity and jet thickness respectively.

only half the jet. Because of this the conditions at the jet centreline do not have to be
explicitly set but are given by the choice of symmetry of the Chebyshev polynomial
in the liquid phase.

2.2.2. Gas phase

In the gas phase the numerical domain of the Chebyshev polynomial, −1 � y � 1,
was re-scaled to the domain 1 � y � yf , where yf is the position of the outer boundary.
This made it possible to move the free-boundary condition away from the surface. The
boundary conditions (2.6) were then imposed at this point, which made it possible
to study of the effect of the location of the free-stream boundary condition. Two
different positions were tested, yf = 1 + 6 δ99 and yf = 1 + 12 δ99, where δ99 is the
thickness of the boundary layer in the gas. These choices gave the same result for all
unstable modes and hence the effect of a finite domain should not have an effect on
the results that are presented.

2.2.3. Solution of the eigenvalue problem

The eigenvalue problem was solved both for temporal modes (α ∈ R) and spatial
modes (ω ∈ R). Also, the general problem was considered where both α and ω are
complex. The numerical problem was solved by the generalized eigenvalue solver, eig,
built into the commercially available mathematical software Matlab version 5.2.

The linear stability problem contains several parameters, i.e. Re, We, µ̃ and ρ̃, and
it is also a function of the downstream position in the jet. The results presented here
are based on the flow of a water jet into air. This means that µ̃ and ρ̃ will be kept
constant. For T = 20◦C the viscosity for water is µl = 1.01 × 10−3 kgm−1 s−1 and for
air µg =1.79 × 10−5 kgm−1 s−1, which gives a viscosity ratio µ̃ = 0.0177. Similarly for
the density ρl = 997 kg m−3 and ρg = 1.21 kg m−3, which gives ρ̃ = 1.21 × 10−3. The
surface tension was set to γ = 0.070 Nm−1.

In order to check the accuracy of the solution several tests were made. These
consisted of grid refinement as well as a variation of the extent of the physical domain.
In figure 3 the effect of resolution can be seen. In the figure both spatial and temporal
results are shown. The most unstable modes seem to be well-converged. It should be
noted that for N = 90 the temporal solution gives matrices that are 180 × 180 and
the spatial solution 720 × 720. Thus the numerical solution to the spatial problem is
much more time consuming. The linear stability problem encountered gives rise to
five possible unstable modes, three sinuous and two dilatational. This was shown by
Söderberg & Alfredsson (1998), who solved the temporal stability problem. These
five modes can be seen in figure 4, which is a magnification of the results in figure 3.
Figure 4(a) represents temporal modes and figure 4(b) spatial modes. The sinuous
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Figure 3. Eigenvalue spectra and numerical accuracy, Re = 1000, We = 25.5 and x/Re = 0.07.
With sinuous (even) modes shown in the top plots and dilatational (odd) in the bottom. In
the temporal formulation α = 1 and in the spatial ω = 1. ×, Nl = Ng = 30; �, Nl = Ng = 60;
+, Nl = Ng = 90.
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Figure 4. (a, b) Eigenvalue spectra and (c) eigenfunctions, Re= 1000, We = 25.5 and
x/Re= 0.07. In temporal formulation α = 1 and in spatial ω = 1. For the v-eigenfunctions,
(c), temporal eigenfunctions (solid) and spatial eigenfunctions (dashed are shown). The
classification of the type is also shown (I , II and III ).
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(even) modes are denoted eI , eII and eIII and the dilatational (odd) modes are
denoted oI and oII . Here I , II and III represents their ‘type’, which also is indicated
in the figure.

In these spectra four of the modes are unstable and the fifth is a sinuous mode
which is almost unstable, eI , to the right (left) in the temporal (spatial) graph. For
the set of parameters used here there are never five simultaneously unstable modes.
In figure 4(c) the eigenfunctions for these modes can be seen in both liquid and
gas. The graphs show the results both for the temporal formulation as well as the
spatial formulation. As can be seen all eigenfunctions decay far away from the free
surface.

2.2.4. Identification of absolute instability

The flow of the plane liquid jet was also investigated with respect to a possible
absolute instability, since this has been observed for the uniform plane liquid jet, see
Lin et al. (1990). The flow is spatially varying and the analysis was performed for
local velocity profiles. Both the contour deformation and the cusp-map methods have
been applied, see e.g. Huerre & Monkewitz (1990). The contour deformation method
makes it easy to identify α+ and α− branches (following the notation of Huerre &
Monkewitz 1990).

In figure 5 an example of a pinch point, (α0,ω0), for the dilatational (odd) mode
of type II is shown. In figure 5(a) the complex α-plane is shown where branch-cuts
have been introduced at the imaginary axis and the grey region indicates stable α+

modes, i.e. α+
i > 0. In figure 5(b) the corresponding ω-plane can be seen.

Initially the integration contour Ω in the complex ω-plane is located above the
real axis. The integration contour is a horizontal line with fixed ωi where ωr takes
all real values. When the contour is lowered toward the real axis a pinch point is
formed by the two branches o+

II and o−
II . For higher values of ωi it can be clearly seen

that o+
II and o−

II originate in the upper and lower half-plane respectively. Also, the o+
I

mode can be seen in this graph. This is also a + mode, which originates in the upper
half-plane.

The dashed curves in the α-plane represent the traces of the different modes when
the integration contour in the ω-plane is slightly higher than ω0,i . In (b) the integration
contour Ω (thick dotted line) in the ω-plane corresponds to the pinching of the o+

II

and o−
II branches. When this contour is followed it gives rise to the solid curves in

the α-plane. The integration contour F (thick dotted curve) in the α-plane is shown,
which passes through the pinch point. When this integration contour F is followed it
gives rise to the curves in the ω-plane, which are the traces of the different modes. In
the ω-plane two curves are labelled, corresponding to oI and oII . As can be seen the
oII -curve shows a cusp at pinching (ω0).

All modes (eI,II,III and oI,II ) shown in figure 4 have been verified to be + modes,
i.e. modes that originate in the αi > 0 plane for higher values of ωi .

Due to the complexity of the problem with several modes present, the pinch-points
have to be located manually. For each velocity profile the Reynolds number that
gave ω0,i = 0 was identified and the result was checked with grid refinement. This is
tedious and time consuming. Hence, only the curve ω0,i(x/Re, Re) = 0 was solved and
not the complete function ω0,i(x/Re, Re). Because of this the ‘fine structure’ of the
absolute instability has not been investigated, i.e. the flow has not been investigated
with respect to global stability or instability, see e.g. Huerre & Monkewitz (1990,
pp. 490–499).
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Figure 5. Pinching of the dilatational (odd) mode of type II , Re= 797, We = 13.7,
x/Re= 0.010, α0 = 2.73 − 0.13i and ω0 = 0.81. (a) The complex α-plane at pinching (solid
lines). (b) The corresponding complex ω-plane. A detailed description of these graphs are
found in § 2.2.4.

3. Experimental set-up
3.1. Flow apparatus

The experiments were performed using the set-up depicted in figure 6, which is the
same as in Söderberg & Alfredsson (1998). In the figure the apparatus, which was
used to produce the plane water jet, can be seen from two different angles. At the
bottom of this ‘headbox’ the plane channel was mounted. The jet from the channel
is directed vertically into a dump-tank in which a centrifugal pump is submerged.
The water is fed from the pump to the headbox through a hardened PVC hose,
which is connected to a stiff PVC tube just upstream of the headbox. The PVC
tube was divided into two before entering the headbox. The flow rate was adjusted
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Figure 6. Experimental set-up. (a) Centrifugal pump, (b) glass beads, (c) honeycomb,
(d ) screen, (e) plane channel, (f ) speaker and (g) signal generator.

with a valve downstream of the pump. With the 1.1 mm channel width used in the
experiments (a = 0.55 mm) it was possible to obtain a jet velocity (Um) of 13 m s−1.
This corresponds to a maximum Reynolds number of about 7 × 103.

The headbox has the dimensions 25 × 25 × 15 cm3 and was made of Plexiglas
allowing optical access to its interior. The spanwise width of the nozzle (channel) was
15 cm. In order to reduce disturbances the water, when entering the headbox, passed
through a flow distributor consisting of a 30 mm thick bed of packed 4 mm diameter
glass beads. Downstream of this distributor the flow passed through two fine meshed
screens that reduce the turbulence level and also give a pressure drop which improves
the uniformity of the flow.

Downstream of the screens a 6 cm long honeycomb with a cell diameter of 5 mm
aligns the flow. Finally an arc-shaped screen was mounted with the top directed in the
flow direction. This made it possible for air bubbles to move up to the sides at start up
of the flow loop. Air bubbles became easily stuck to this screen and therefore it was
possible to manually vibrate the screen by inserting a bar from the nozzle opening.
This last screen had a porosity of 0.60 and for all velocities the Reynolds number
based on wire diameter was less than 10, hence this final screen was sub-critical with
respect to vortex shedding. A pressure transducer was mounted on the wall of the
headbox downstream of the last screen and the transducer output was calibrated
against the jet flow rate.

The channel nozzle consisted of a contraction made of two quarter-cylinders with
a radius of 5 cm followed by two 4 cm long flat plates, all made of brass. Before any
experiments were performed the nozzle was carefully polished and the sharp edges
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Figure 7. Principle of shadowgraph visualization: (a) liquid jet, (b) light source,
(c) semi-transparent plate and (d ) camera.

were checked regularly to ensure that they had no damage that could disturb the jet.
Damage to the edges (or even a water droplet stuck at the outlet) showed in the
visualizations as a stationary wave pattern on the surface having a �-shape with
the origin at the edge.

In order to trigger wave disturbances a loudspeaker was firmly attached to the
headbox. This position of the speaker can also be seen in figure 6. It was driven by a
signal generator, which allowed control of the amplitude and frequency of a sinuous
signal.

3.2. Visualization method

The flow of the jet was visualized by the shadowgraph method, figure 7, implemented
by placing a slide projector far away from the jet, in order to simulate a point light
source. The light (rays) from the projector are almost parallel when they reach the jet.
As the light passes through the jet the curvature of the surface will cause refraction
of the rays. When the rays reach the semi-transparent plate a pattern will appear, i.e.
shadows.

3.3. Quantification of images by wavelet transform

Quantitative data from the visualization images were obtained using a continuous
wavelet transform, see e.g. Farge (1992). The images captured with the CCD camera
were transferred to a computer and the surface variations were obtained from a
relation between light intensity and surface curvature.

The surface variations were quantified with a Morlet continuous wavelet transform,
which makes it possible to obtain both the spatial variation of the wavenumber
and the amplitude. The Morlet wavelet consists of a sinuous function weighted by
a Gaussian function. From a time series of 100 images a vertical line of pixels was
extracted from the centre of each image. The Morlet wavelet was applied on these
signals, after which averaging was performed.



Instability of a relaxational plane liquid jet 101

(a)

50 100 150 200 250

(b)

(c)                                                                            (d )

50 100 150 200 250
x

500 100 150 200 250 500 100 150 200 250

α

0.5

1.0

1.5

2.0

α

A
m

pl
it

ud
e

x                                                                               x

Figure 8. Example of signal generated analysed with the wavelet method. (a) Example of
signals generated. (b) Contour plot of wavelet amplitude map, G = 0.3: �, detected wavenumber
variation; —, exact. (c) Wavenumber variation and (d ) amplitude variation. In (a), (c) and (d )
from bottom to top G = 0, 0.3, 0.6, 0.9, 1.2. In (c) and (d ), �, detected variation and —, exact.

In order to test and validate the method 100 images (signals) with known
wavenumber and amplitude variation were created. These had the form

I (x) = A(x) sin θ (x) + Gr(x),

where I (x) is the intensity, A(x) ∈ [0, 2] the amplitude variation, θ(x) the phase,
r(x) ∈ [0, 1] a random uniform noise and G the noise level. The wavenumber is
obtained from

α(x) =
dθ

dx
.

In figure 8 the results of this test are presented for a wavenumber and image resolution
which is representative for the experiments performed. Figure 8(a) shows examples
of the signals generated. From top to bottom, the noise level decreases. Also, the
wavelength is slowly increasing in the x-direction as is the amplitude. The resulting
wavelet map in figure 8(b) is the result of averaging over 100 generated signals. In
this figure the wavelet map is shown as a contour plot. The maximum ridge can be
clearly seen. At each x-position the maximum of the wavelet transform is extracted
along the vertical wavenumber axis, and is represented with circles. This gives both
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a dominant wavenumber and its related amplitude. In the figure the exact (known)
variation is also plotted as a solid line.

The sensitivity to disturbances is shown in figure 8(c, d) as the extracted wavenumber
and amplitude variations for the noise levels shown in (a). As can be seen, the wavelet
method is rather insensitive to random noise. However, deterministic noise with a
spatial periodicity can degrade the result severely.

3.4. Relation between light intensity and surface amplitude on the jet

Since the velocity profile in the jet is varying, it is difficult to measure the growth
rate without measuring the whole jet profile, both for u and v. However, the amplitude
of the surface is accessible if the variations in greyscale due to the waves in the jet can
be related to the surface amplitude. Based on geometrical optics, with the assumption
of central rays, a thin sheet thickness 2h and small amplitude (relative to the sheet
thickness) an expression can be deduced that gives the amplitude h′ of the free surface,

h′(x) =
1

2σh(x)αr (x)2

∣∣∣∣ Λ(x)

1 − Λ(x)2

∣∣∣∣ , (3.1)

where Λ(x) is the maximum variation in light intensity relative to the mean intensity
at a fixed streamwise position and σ = d(ng/nl − 1), where nl,g are the indexes of
refraction for the liquid and gas respectively and d is the distance between the jet
surface and the shadowgraph image. This expression is monotonic, which is not
correct for larger amplitudes and longer distances d .

The results obtained for surface amplitude variation should be treated with caution
for two reasons. First, the method used to obtain the surface amplitude from
intensity variations is only valid for small amplitudes (depending on wavenumber),
found by simulating the shadowgraph method numerically. Such simulations were
performed for the parameters used in the experiment and the agreement was good for
h′ < 0.1h. Second, linear stability results are based on the assumption of infinitesimal
disturbances, which seems to be violated since the waves that appear on the surface
of the jet can be seen with the naked eye.

4. Results
The results in this section are based on the flow of a plane water jet in air and the

parameters used can be found in § 2.2.3. These parameters are the same as those used
in Söderberg & Alfredsson (1998).

4.1. Spatial stability

By tracking the downstream movement of the individual modes for variations of α or
ω, it is possible to obtain contour plots such as in figures 9 and 10. These two figures
show the unstable regions (grey-shaded), for all five modes at Re = 1000, and from
the temporal (left column) and the spatial (right column) formulations. In figure 9
the three unstable sinuous modes are shown, from top to bottom, denoted eI , eII

and eIII , as in figure 4. The horizontal axis is the streamwise position scaled with
the Reynolds number. Because of the similarity of the flow field a fixed x/Re implies
a fixed velocity profile. This axis is the same for both the temporal and the spatial
results. The vertical axis represent a real wavenumber α for the temporal formulation
and a real angular frequency ω for the spatial formulation. In the graphs the temporal
and spatial growth rates are shown as contour levels, which represent constant values
of ωi and −αi , respectively. Also, ωr (αr ) is shown by dashed lines in the temporal



Instability of a relaxational plane liquid jet 103

(a) Temporal

α

(b) Spatial

1

2

3

α

1

2

3

α

1

2

3

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

�

1

2

3

�

1

2

3

�

1

2

3

x/Re x/Re

Figure 9. Contour plots representing sinuous unstable modes. (a) Temporal formulation,
where the solid contours represent constant values of ωi (�ωi = 0.02) and the labelled dashed
contours represent constant values of ωr . (b) Spatial formulation, where solid contours represent
−αi (�αi = 0.02) and the labelled dashed contours represent constant values of αr . Re = 1000
and We = 25.5. From top to bottom, modes of type I , II and III .

(spatial) graph. The linear stability has only been solved in the region α ∈ [0.1, 3.6]
(ω ∈ [0.1, 3.6]) for temporal (spatial) stability. The first streamwise position is at
x/Re = 0.0037, which for Re= 1000 gives x =3.7.

For the first mode, I , the temporal and spatial results give similar graphs. Maximum
growth rate for the temporal case is ωi = 0.38, which corresponds to α = 1.96 and
ωr = 2.04. Maximum growth rate for the spatial case is −αi = 0.40 corresponding to
ω =2.10 and αr =2.01. Hence, the maximum is not identical in the two different
formulations. Maximum spatial growth is obtained for a slightly higher wavenumber
and higher frequency compared to the maximum temporal growth. It should also
be noted that the neutral curves are almost straight lines, which are parallel to the
vertical axis. For the second mode, II , the temporal and spatial results are different.
For the temporal formulation, close to the nozzle the unstable region covers all
wavenumbers. Downstream of this region it shifts towards lower wavenumbers. The
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Figure 10. Contour plots representing dilatational unstable modes, I (top) and II (bottom)
for (a) temporal and (b) spatial formulation. For description see figure 9.

spatial formulation gives the result that the mode is unstable for low frequencies. The
third mode, III , which only can be found for sinuous disturbances, is unstable in a
bounded parameter region given by αr ≈ 0.6–3.0, ωr ≈ 0.6–3.4 and x/Re ≈ 0.05–0.24.

The dilatational modes, denoted oI and oII in figure 10, behave qualitatively in
the same way as the sinuous modes of the same type. However, they have a slightly
different unstable region, which can be seen in figure 11, where the boundaries of the
unstable domains are plotted. From this graph it is also clear that there is no point
in the (α, x/Re)-plane where all five modes are simultaneously unstable.

Also, in figure 11 examples of the eigenfunctions associated with the modes are
plotted for α =1 and x/Re = 0.07. At this position the velocity profile is very similar
to the profile at x/a = 55 (x/Re = 0.078) shown in figure 2 and the eigenfunctions are
the same as in figure 4 but here presented for the liquid jet only. The eigenfunctions
show the amplitude distribution û and v̂, with the y/h̃-coordinate on the vertical axis.
The modes of type I are seen to have a maximum in û close to the inflection point
in the profile, which is located at y/h̃ ≈ 0.5, see Söderberg & Alfredsson (1998). Also,
for this type the v̂ amplitude is maximal at the surface for both modes.

From figure 11 it appears that the modes of type II have their maximum amplitudes
at the surface (for the case of eII the amplitude at the centreline is slightly higher).
This could be a sign that the effect of surface tension is more important for this type.
Finally, the type III mode seems to be coupled to the velocity profile in the liquid
jet with low amplitudes at the surface.

4.2. Fixed-frequency forcing

In the experiments presented in Söderberg & Alfredsson (1998) there are no signs
of disturbances at low jet velocity except capillary waves originating from the side
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Figure 11. (a) Location of sinuous (—) and dilatational (- - -) unstable modes at Re = 1000
and We = 25.5 and (b) eigenfunctions for all three types of modes. Modes are shown for α = 1
and x/Re= 0.07 (marked by × in (a)). In (b) —, |û| and - - -, |v̂|.
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Figure 12. Shadowgraph visualization of plane jet at Re =700, We = 12.5 and a = 0.55 mm.
(a) Undisturbed and (b) with acoustic forcing, f = 669 Hz. The images are taken from
Söderberg & Alfredsson (1998).

bars, see figure 12(a). In this image the jet is flowing from top to bottom and the
spatial extent can be identified by the centimetre markings on the opaque plate. If,
however, the speaker is turned on, a spanwise homogeneous pattern can be observed
in the shadowgraph visualization, figure 12(b). This pattern is a result of waves on
the surface of the jet and when the acoustic forcing is removed the waves disappear,
which is typical behaviour of convective modes that propagate in space.

In order to compare the wavenumber and amplitude variation obtained in the
experiments with linear stability results, a spatial formulation was used where a real
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Figure 13. Comparison between experimental and theoretical results on wavenumber
variation, from top to bottom f =340, 485, 612, 669 Hz. Re= 700, We = 12.5 and a = 0.55 mm.
(a) Sample images with forced wave disturbances and (b) results from wavelet transform and
theory. In the contour plots the experimental maximum is marked � and wavenumber variation
from spatial stability theory is shown both for sinuous (− − −) and dilatational (· · ·) modes.
The type of mode is indicated on the graphs (I,II,III ). The images are taken from Söderberg &
Alfredsson (1998).

frequency can be fixed, ω ∈ R. The wavenumber is then obtained as Re{α+} = αr ,
and the growth rate as −Im{α+} = −αi . Here α+ is the downstream response to
the forcing, which was checked by the contour deformation method as described in
§ 2.2.4. In order to make a comparison with the experimental results the basic flow
field in the stability calculations, Re =700 with the presence of gravity, was taken
from Söderberg & Alfredsson (1998), see figure 2.

Figure 13 shows a comparison between the experimental and theoretical results. The
jet was forced at four different frequencies, which yield images similar to figure 12(b).
By the wavelet method described in § 3.3 the wavenumber variation was extracted
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Figure 14. Measured amplitude and integrated growth as a function of downstream position
for modes of type I : —, sinuous mode, - - - -; dilatational mode, �; measured amplitude.
Re = 700, We = 12.5 and a = 0.55 mm.

as a function of downstream position. In figure 13(b) four graphs are shown, which
represent the four forcing frequencies. In each graph the wavenumber is plotted as
a function of the non-dimensional x-coordinate. The wavenumber variation for the
three sinuous and two dilatational modes is plotted on top of the wavelet transform
map, cf. figure 8(b). It is possible to conclude from these graphs that the observed
waves initiated by acoustic forcing probably are of type I. For the four frequencies
the wavenumber is decreasing downstream in the jet. Also, a higher frequency gives
a higher wavenumber. The modes of type I have the lowest wavenumber, which is
roughly one-half that for the modes of type II. In between these two pairs of modes
the fifth (sinuous) unstable mode is found.

By making use of the relation between the wave amplitude and the variation of light
intensity in the images, (3.1), it is possible to obtain an estimate of the downstream
amplitude variation of the waves, see figure 14. In this figure the logarithm of the
measured amplitude variation is plotted as well as the integrated growth A(x) from
the stability calculations, which is defined as

A(x) =

∫ x

0

−αi(εξ ) dξ.

Since the initial amplitude of the disturbance is unknown a constant has to be added.
This constant has been fitted where the measured amplitude obtains a maximum.
The validity of the experimental method is discussed in § 3.4. However, from the
figure it appears that the waves in the images could correspond to the dilatational
mode, mainly since the sinuous mode appears to grow only very close to the nozzle
and for the two lowest frequencies the calculations do not give any growth at all.
For both dilatational and sinuous modes the zero-level for the calculated growth is
indicated in the graph by 0d and 0s respectively. The results seem to be in agreement
with the visual appearance of the images, where the contrast clearly decreases in the
downstream direction. Hence there seems to be a qualitative agreement between the
experimental and theoretical results.
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Figure 15. (a) Integrated growth rate for dilatational mode of type I at Re= 700 and
(b) bounds from changing frequency and forcing amplitude.

In figure 15(a) the integrated growth rate is plotted as a contour plot. The vertical
axis is unscaled and the horizontal axis represents the downstream position scaled with
the half-channel thickness. The contour levels represent lines of constant integrated
growth rate. As can be seen, there is a maximum at x ≈ 40 and fmax ≈ 600 Hz. Further
downstream the ridge of maximum growth shifts to slightly lower frequencies, which
means that the maximum amplitude will occur at slightly different positions depending
on the frequency. After the maximum point the amplitude will decay. This behaviour is
a result of the streamwise variation of the basic flow. Also, for these flow conditions
and parameters the integrated growth of the sinuous mode is lower than for the
dilatational mode.

Experimentally the maximum amplification was sought by altering the power
(voltage), E, and frequency to the speaker. Without forcing the visualizations show no
signs of waves, as in figure 12(a). In order to obtain visible waves, the speaker has to
be turned on and the lowest voltage needed to see waves was found to be 540 Hz. The
voltage supply to the speaker was then altered and the frequencies that gave visible
waves were recorded. This result can be seen in figure 15(b). The response of the
speaker has not been considered and the interpretation may not be straightforward,
but it gives a qualitative agreement with the integrated growth rate.

4.3. Integrated growth

The previous section shows a comparison between experiments and theory regarding
growth rate and wavenumber variation. Based on this it appears that the mode present
in the jet is dilatational and of type I. In figure 16(a) the maximum integrated growth
rate for different Re is plotted. Also, in figure 16(b, c) the wavenumber variation along
this maximum growth ridge is plotted as well as fmax . The integrated growth rate
is plotted as a function of downstream position. An increase in Reynolds number
gives a higher maximum growth rate and a shift of the maximum downstream. At
the lowest Reynolds number there is a small growth, which can barely be seen in
the graph. The wavenumber is plotted against x/Re. An increased Reynolds number
gives an increased wavenumber, i.e. shorter waves. Also, the most amplified frequency
is plotted as a function of Reynolds number and the graph shows that an increase
in Re gives a higher frequency. These results are calculated with the same velocity
distribution as in figures 9 and 10.

Figure 17 is the experimental equivalent to figure 16. The six images, (a–f ), are
taken from the central part of the jet and represent an increase in Re from left to
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Figure 16. Integrated growth for the dilatational mode of type I , Re= 500, 750, 1000, 1500
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Figure 17. Shadowgraph visualization of the breakup of a plane liquid jet.
(a–f ) Re = 700, 830, 920, 1050, 1330, 1680 respectively.

right. In figure 17(a) Re = 700 and no waves can be seen. At the top of the image the
nozzle is visible and the downstream position x is shown on the vertical axis. As the
velocity (or equivalently Re) increases waves start to appear in the image. These are
not forced but naturally occurring, and do not have the same spanwise homogeneity
as the forced waves, figure 12(b).
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Figure 18. Results on the existence of spatial modes in the experimental case presented in
figure 12. The grey region indicates absolute instability. In this region ω0,i is plotted. Also,
maximum ωi for αi = 0 and αr = 0 . . . ∞ is plotted for the eII , eIII , oI and oII modes.

In figure 17(c) the Reynolds number is slightly higher, Re = 920, and the waves
break down (jet breakup). The breakdown starts at x ≈ 40 and is spread in the
streamwise direction, i.e. both waves and breakdown can be seen down to x ≈ 100.
When the velocity (Re) is increased even more the breakdown moves upstream,
figure 17(d–f ). Also, the spanwise extent of the breakdown region seems to shrink.

4.4. Validity of the comparison with spatial stability calculations

If the experimental results are to be compared to the spatial stability results the flow
cannot be absolutely unstable. If the flow is absolutely unstable the integration contour
in the complex ω-plane cannot be lowered to the real axis without encountering a
pinch point, hence spatial convective modes cannot exist. In figure 18 calculations for
absolute instability for the experimental case, figure 12, are shown. The basic flow field
in these calculations, Re = 700 in the presence of gravity, is taken from Söderberg &
Alfredsson (1998). Figures 18(a) and 18(b) show the results for the sinuous and
dilatational modes, respectively. Closest to the nozzle the flow is absolutely unstable,
which is indicated with the grey region. In this region the curve ω0,i is plotted, which
corresponds to pinch points. Also, in the graphs the maximum ωi for αi =0 and
αr =0 . . . ∞ can be seen for the eII , eIII , oI and oII modes. These results show that a
comparison with spatial stability calculations is valid for x > 7.

4.5. Absolute instability

The flow was also investigated with respect to absolute instability by searching for
pinch points, ω0, in the complex ω-plane and corresponding saddle points, α0, in the
complex α-plane, see Huerre & Monkewitz (1990). Pinch points were found for the
sinuous and dilatational modes of type II but not for the type I modes or for the di-
latational type III mode.
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Figure 19. The Weber number (log10 We) as a function of x/Re and log10 Re for the line
ω0,i =0. —, Sinuous and - - -, dilatational modes of type II .

As discussed in § 2.2.4 the full dependence of Re and x/Re on ω0,i has not
been solved for but only the locations of pinch points with zero growth rate,
ω0,i(Re, x/Re) = 0. This gives two curves, one for the dilatational mode and one
for the sinuous mode, and the locations of these lines are in some sense ‘neutral’
curves. The calculations show that for x/Re < 0.095 the sinuous mode pinches before
the dilatational mode when the integration contour is lowered in the ω-plane, i.e.
ωs

0,i >ωd
0,i , where superscripts s and d denotes sinuous and dilatational, respectively.

For x/Re > 0.095 the situation is the opposite, ωs
0,i < ωd

0,i . Also, the criteria for an
absolute instability are fulfilled for both modes along the two curves. As mentioned
previously the whole region ω0,i > 0 has not been solved but isolated points distributed
within this region have been explored. For all these points ω0,i > 0, which indicates
that the flow could be absolutely unstable within this region.

4.5.1. We as a function of velocity profile and Re

Figure 19 shows a three-dimensional representation of the line ω0,i = 0 as a function
of x/Re, log10 Re and log10 We. Thick solid and dashed lines represent the sinuous and
dilatational modes respectively. These are also projected onto three different planes
(represented by thin solid and dashed lines on the planes). Thin dotted guiding lines
are added to simplify the interpretation of the graph. The planes are referred to as
lower (x/Re, log10 Re), left (x/Re, log10 We) and right (log10 Re, log10 We) planes. A
constant value of x/Re represents a fixed velocity profile. As can be seen in the graph
the projection of the line onto the lower plane gives rise to two regions, either ω0,i > 0
or ω0,i < 0, where ω0,i > 0 implies an absolutely unstable mode.

For fixed x/Re a specific velocity profile is chosen. From the graph it can be
seen that all velocity profiles have a region for low Re where both modes give
positive growth rates. Closest to the nozzle both modes seem to coalesce into one
line, but from this point to x/Re = 0.13 the sinuous mode becomes unstable for lower
Reynolds numbers than the dilatational mode. However, for velocity profiles further
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Figure 20. The angular frequency ωr as a function of x/Re and log10 Re for the line ω0,i = 0.
—, Sinuous and - - -, dilatational modes of type II .

downstream of x/Re = 0.13 the situation is the opposite. The downstream behaviour
of the two curves is different, where the sinuous mode tends to a constant Reynolds
number, Re ≈ 180, and the dilatational seems to give a linear dependence between
log10 Re and x/Re. This indicates that the curve approaches zero Re asymptotically.

Since the Reynolds number is altered by changing the velocity it can be directly
related to the Weber number by We ∼ Re2. This is clearly seen in the right plane,
which shows exactly this relation as a straight line given by

log10 We = 2 log10 Re + constant.

The left plane shows the effect of We, which is similar to the projection onto the
lower plane due to the aforementioned relation between Re and We, hence for low
We ω0,i > 0. The downstream value of the Weber number tends to We =0.83. This is
the global Weber number based on the conditions at the end of the channel (mean
velocity in the channel and half channel height). If the Weber number is defined
as a local quantity, see table 1, one obtains W̃e = 1.0, which is in agreement with
Lin et al. (1990). This should be the case since the velocity profile becomes uniform
downstream. However, the figure also shows that the dilatational mode can become
absolutely unstable at a higher We than the sinuous mode, given a specific profile.

4.5.2. ω0,r as a function of velocity profile and Re

In figure 20 a three-dimensional plot can be seen that has a lower plane identical
to figure 19 but with the frequency, ω0,r , on the vertical axis. In the left plane the
frequency dependence of the velocity profile can be seen. The two curves show clear
differences between the sinuous and dilatational waves except for the region closest
to the channel exit. The dilatational mode has a markedly higher frequency, which
steadily decreases along the x/Re-axis from a value ω0,r ≈ 0.8 closest to channel exit.
The sinuous mode behaves differently and drops rapidly to low frequencies (below
10−2).
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Figure 21. The wavenumber αr as a function of x/Re and log10 Re for the line ω0,i = 0.
—, Sinuous and - - -, dilatational modes of type II .

The right plane show the ω0,r dependence of Re, which is similar to the dependence
of position in the jet (it should be kept in mind that the Re-axis is plotted in
logarithmic scale).

4.5.3. α0,r as a function of velocity profile and Re

The last three-dimensional graph, figure 21, shows α0,r as a function of Reynolds
number and velocity profile. The curves in the left plane clearly show a tendency
similar to that of ω0,r for the decrease in wavenumber (longer waves) and for more
uniform velocity profiles (x/Re). Also, the dilatational mode shows a slightly higher
wavenumber compared to the sinuous mode. However, a difference with the behaviour
of ω0,r is that the wavenumber variation for the two modes is the same although
αd

0,r > αs
0,r throughout the jet except closest to the nozzle where αd

0,r =αs
0,r .

The right plane of figure 21 shows that the curves fall on top of each other except
for the low Re. This means that given a specific location in the jet (x/Re < 0.05, which
is given by the graph) the modes cannot be separated by their wavelength but only
by their frequency or as a consequence, their phase speed.

4.5.4. Local and global We

Figure 22(a) shows the global Weber number variation for the curve ω0,i = 0 as
a function of x/Re. This is the same variation as can be found in the left plane
of figure 19 and is used here for reference. The graph clearly shows that the global
Weber number varies over a span of two orders of magnitude. As mentioned in the
previous section this gives a result that is in agreement with the theory for a uniform
liquid sheet downstream in the jet. However, from knowledge of uniform liquid sheets
it is clear that the absolute instability is a direct effect of the surface tension and
hence the Weber number. In the region directly after the nozzle the surface velocity
is clearly different from the mean velocity of the jet. With this in mind it might be
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Figure 22. Weber number variation for ω0,i: (a) We, (b) Wesurf and (c) We/α0,r .

more relevant to look at a surface Weber number defined as

Wesurf =
ρU 2

surfh̃

γ
,

in which Usurf is the local surface velocity. This gives a smaller range of We. The
streamwise position where the curve for the sinuous mode levels out at Wesurf = 1
(within 5% of its final downstream value) is reached at x/Re= 0.15 (figure 22b). In
this region local surface velocity and local jet thickness seem to be the controlling
parameters. For the dilatational mode Wesurf appears to go to zero.

5. Discussion
All results presented are for a plane water jet flowing out into air, and the parameter

variation in the experiments is obtained by a change in the jet velocity. Hence, both
the Reynolds number and the Weber number change simultaneously. This method of
parameter variation has also been used in the stability calculations.
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All calculations have been made under the parallel flow assumption; hence the
validity is unclear close to the nozzle where the variation in the streamwise velocity
profiles is strong. Since the velocity field scales linearly with the Reynolds number,
the assumption of parallel flow will be more justified for higher Reynolds numbers.
As an example consider the case of a dilatational mode at a position where the
velocity profile is almost uniform, e.g. x/Re = 0.3, for ω0,i = 0 in figure 20. The
Reynolds number at this point is low, Re ≈ 70, which gives x ≈ 21. The corresponding
wavenumber is αr = 0.25, figure 21, which gives a wavelength λ= 2π/αr ≈ 25. Hence
the wavelength is longer than the distance for profile relaxation, which implies that the
use of the local parallel flow assumption is questionable for low Reynolds numbers.
For the present experiments Re =700–1700, but still the results are questionable
closest to the nozzle because of the fast profile relaxation variation in this region, i.e.
strong non-parallel effects are present.

In § 4.1 all calculations are performed with a real frequency (wavenumber) for the
spatial (temporal) case and the possibility of an absolute instability is not investigated
at all. This means, based on the results in § 4.5, that in some regions, which are shown
as convectively unstable in figures 9 and 10, the flow is actually absolutely unstable.

Regarding the validity of the comparisons between experiments and numerical
results it should be noted that Re =700. From figure 19 it can be seen that
this Reynolds number gives a region with absolute instability from x/Re =0
to x/Re= 0.013; thus x ≈ 9. Also, in § 4.4 the experimental case was calculated
specifically, and gave the flow as absolutely unstable from the nozzle up to
x ≈ 7. Hence the absolutely unstable region extends less than four channel heights
downstream and the question of the validity of the parallel assumption will arise as
discussed above. However, from this point and further downstream the flow is only
convectively unstable.

5.1. Spatial convective stability

The results from the spatial stability analysis show that the wavenumber variation
obtained in experiments seems to correspond to modes of type I. From the integrated
growth rate it appears that the dilatational mode is the most amplified. This is
contradictory to the results by Hashimoto & Suzuki (1991). They measured the
wave amplitude optically and the results show that the waves are sinuous. Also,
they concluded that sinuous disturbances have a higher growth rate than dilatational
disturbances. This was based on temporal linear stability calculations where the
surrounding gas and Weber number were neglected. However, the linear stability
results of Hashimoto & Suzuki (1991) also indicate that surface tension is an
important parameter. In their results they show that the surface tension has a
stabilizing effect on modes of type I . Hence the statement that the sinuous mode is
always more amplified than the dilatational may not be general. This can be seen
from figure 14, where the integrated growth rate is lower for the sinuous mode than
for the dilatational mode.

5.2. Absolute instability

The absolute instability is closely connected to the surface tension and for a jet with
a uniform velocity profile it has been shown that an absolute instability occurs for

sinuous waves when W̃e < 1. For capillary waves on a non-moving fluid the dispersion
relation is given by

ω∗2 =
γ α∗3

ρ
,
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Figure 23. Group velocity of capillary waves with a wavenumber given by α0,r for the line
ω0,i = 0. —, Sinuous and - - -, dilatational modes of type II .

where ω∗ is the unscaled angular frequency and α∗ the unscaled wavenumber. This
gives the phase velocity, c∗, and group velocity, c∗

g , as

c∗ =
ω∗

α∗ =

(
γ α∗

ρ

)1/2

,

c∗
g =

dω∗

dα∗ =
3

2

(
γ α∗

ρ

)1/2

.

By non-dimensionalization with a suitable velocity and length scale (Um and a for
this case) these can be expressed as

c =

(
α

We

)1/2

,

cg =
3

2

(
α

We

)1/2

.

From the results for absolute instability the group velocity for a capillary wave
with wavenumber, αr , can be obtained along the line ω0,i = 0. This is plotted in a
three-dimensional graph in figure 23. The lower plane in the graph represents the
streamwise position, as in figures 19–21, and the surface velocity usurf. The vertical
axis represents the group velocity for a wave with wavenumber αr , which corresponds
to the line ω0,i = 0, scaled with usurf at that position. By examining the projection of
the line onto the left plane it is clear that cg ≈ usurf in the region from the channel
exit to x/Re = 0.1. This is the case for both the dilatational and the sinuous modes.
After this region the behaviour is significantly different. The dilatational mode gives
an increasing cg while it decreases for the sinuous mode.

Based on the results on absolute instability it is tempting to generalize the result to
two regions in the jet. In the initial phase, when the jet profile experiences a relaxation,
the two surfaces of the jet behave independently, which means that the difference
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in behaviour for the different symmetries is minor. Far downstream in the jet only
the sinuous disturbance shows a pinch point, which gives an absolute instability if
Weloc < 1. This is exactly the result obtained experimentally by Lin & Roberts (1981)
and theoretically by Lin et al. (1990).

The results obtained regarding an absolute instability for the plane liquid jet should
be compared to the cylindrical geometry, where it is a dilatational (varicose) mode
that gives absolute instability when the velocity profile is uniform. The reason for this
difference is, as mentioned in the introduction, that the surface tension is the driving
force of absolute instability for cylindrical jets and for the plane jet it is a stabilizing
force. However, the effects that cause absolute instability in the region closest to the
nozzle, where the absolutely unstable modes with different symmetry behave in the
same way, could also be present in a relaxational cylindrical jet. If the wavelength
is short and if the basic flow locally is considered to be plane, i.e. the wavelength
is much shorter than the radius of the cylindrical jet, the flow would be similar to
that found for the planar case. Hence, this absolutely unstable region could also be
present in the cylindrical case. Based on the visualizations performed by Hoyt &
Taylor (1977) this could be the case. Their visualizations of a cylindrical relaxational
liquid jet showed waves close to the nozzle, which appear to be similar to what is
found in the plane geometry. Also, their visualizations show that the waves seem to
initiate a breakup similar to that shown in figure 17.

The result by Leib & Goldstein (1986), regarding the absolute instability in a
cylindrical jet with velocity profile relaxation does not show the same result as for
the plane geometry. This could partly be an effect of the geometry (minimization of
surface area/energy, as mentioned in the introduction), but could also be because they
used a decaying parabolic velocity profile, i.e. a profile without inflection points. Also,
it is possible that they neglected the presence of an ambient gas. It was showed by
Lin & Lian (1990) through linear stability analysis that two fundamentally different
mechanisms for the breakup of the cylindrical jet can be identified: one is the
mechanism that was treated by Rayleigh (1896) where surface tension is the driving
force, which breaks the jet up into drops; the second is the interaction between the
waves and the ambient air (gas), which creates pressure fluctuations that drive the
instability.

5.3. Frequency selection for naturally occurring waves

As can be seen in figure 17, the naturally occurring waves are well-defined but do
not have the same spanwise homogeneity as the forced waves. This implies either
the presence of an external forcing or some frequency selection mechanism. One
possibility for this could be the presence of a pocket of absolute instability in the region
close to the nozzle. This could serve as a forcing mechanism for the convective modes,
which then would be present downstream. From figures 20 and 21 it is possible to see
that the frequency and wavenumber for the pinch points lie within the region where
the convective modes I are growing.

5.4. Jet breakup

The breakup is probably a result of the wave amplitude reaching a level where
nonlinear mechanisms initiate the breakup. If one assumes that this takes place
for a certain threshold amplitude, the breakup could be explained by figure 16.
For low Reynolds numbers the growth reaches a maximum level a certain distance
downstream from the nozzle; further downstream it decays. If this maximum is
below the threshold amplitude only waves will be seen on the jet. As the Reynolds
number increases the maximum integrated growth rate will also increase and move
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downstream. If the maximum amplitude is close to the threshold, breakup will appear
randomly (cf. boundary-layer transition). An increase of the Reynolds number will
also move position where the threshold limit is reached upstream, i.e. the breakup
moves upstream toward the nozzle.

As an example one could consider the case Re= 750 in figure 16 and assume that
this corresponds to an amplitude which is slightly below the threshold level. When
the Reynolds number is increased to Re= 1000 the threshold level is reached and the
breakup is clearly visible at a distance downstream of the channel exit (cf. figure 17).
If the Reynolds number is increased further the threshold amplitude will be reached
at a position closer to the nozzle, see figure 16. Also, the growth rate is increasing
at this position, which gives a narrower (in the streamwise direction) breakup region.
This hypothesis assumes that the initial amplitude at the channel exit is constant.

6. Conclusions
A plane liquid jet shows the presence of wave disturbances. These give rise to waves

on the jet surface, which can be visualized by the shadowgraph method. At higher
Reynolds number these waves seem to initiate a jet breakup. This breakup moves
upstream toward the channel nozzle with increasing Reynolds number.

Local linear stability analysis shows that the relaxational liquid jet has five modes
that can become unstable, three sinuous and two dilatational. Results obtained with
the spatial linear stability formulation show good agreement with experimental results
regarding the wavenumber variation of the waves. The wavenumber can be extracted
with good accuracy from shadowgraph visualizations of the plane jet by a continuous
Morlet-wavelet transform. Also, this gives the amplitude variation of the waves, which
together with the theoretical integrated growth seem to indicate that the observed
waves are due to a dilatational disturbance.

The relaxational plane liquid jet has a pocket of absolute instability for one sinuous
and one dilatational mode. This is in contrast to the case of a jet with uniform
velocity profile, where only the sinuous mode can be absolutely unstable. However,
far downstream in the relaxational plane liquid jet the sinuous mode is the only
absolutely unstable mode.

The frequency selection for the observed waves is believed to be related to the
region of absolute instability located close to the channel exit. This could serve as a
forcing mechanism for the convectively unstable disturbances.
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